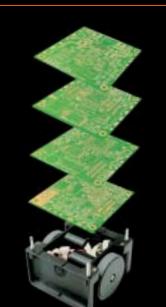
INTRODUCING THE WORLDS MOST POWERFUL AND SMALLEST **SOCCER PLAYING ROBOT**

Mechan

The size is similar to a t	tennis ball.
Length:	75mr
Width:	75mr
Height with electronic:	75mr
Wheel diameter:	46mr

Weight of the robot:


Without batteries: With batteries:

Specification of the two PWM controlled DC Motors:

Output power:	4.05W
Speed up to:	8000rpm
Stall torque:	21.2mNm
Magnetically encoder:	512ppr
Maximum speed:	2.54m/s
	(almost 10km/h)
Maximum acceleration:	5m/s ²
	(From 0 to 2.5m/s
	in less than 0.3s)

340g 450g

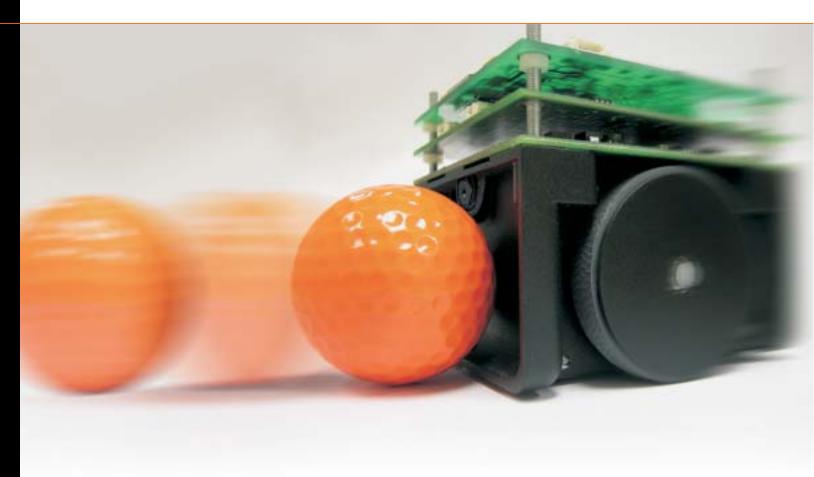
40MHz 16bit XC167 automotive controller 100MHz 32bit Etrax Linux PC on chip 600MHz 16bit Blackfin DSP > 64Mbyte of SDRAM Stereo audio input and output 2 Full color VGA digital camera 640x480@30fps 320x240@60fps 2 Bluetooth wireless interfaces 1 Wireless video interface CAN bus on each board 100Mbit Ethernet USB host controller Compact flash interface for 1Gbyte HDD Additional sensors: Compass, Gyro, Acceleration, Motor Encoder

Tinyphoon - be typhoonic

WHO WE ARE

We are a group of research engineers and students working at the University of Technology in Vienna.

VHAT WE DO


We are developing a next generation reference plat-form for fully autonomous and standalone robots.

on about Tinyphoon is found at

ORMATION CONTACT

DIPL.-ING. DR. GREGOR NOVAK MSc.(OU) Researchgroup leader novak@bluetechnix.at Tel: +43 664 346 11 43

DIPL.-ING. STEFAN MAHLKNECHT Chief system engineer Institute of Computer Technology mahlknecht@ict.tuwien.ac.at Tel: +43 1 58801 384 47

HIGH TECH MODULAR PLATFORM

INTRODUCING THE WORLDS MOST POWERFUL AND SMALLEST SOCCER PLAYING ROBOT

ν

Our new concept for autonomous mobile robots simplifies its construction by a modular design. Like the architecture of a PC it supports the integration of several existing components. Similar to the plug and play principle robots can be assembled with additional components, which are linked via a bus system, in order to extend or modify the robot's functionality. For the communication between these components a communication and configuration language is being developed. This concept can be applied to different mechanical platforms. Our testing platform is a two-wheels driven robot, which fits into a cube with an edge length of 75mm.

This structure represents a four-layer model, where the lowest level is the motion unit. The whole system is embedded in a global command and information system, which has its connection to the robot via the higher-level control unit.

IN OUR TEST SYSTEM THE FUNCTIONALITY IS DISTRIBUTED OVER **4 ELECTRONIC BOARDS:**

- Sensor board
- Motion Control Board
- Linux PC Board
- Vision Board

SENSORS FOR NAVIGATION AND MOVEMENT CONTROL

- Compass (Navigation)

ν

- Gyro Sensor (improved curve keeping)
- Acceleration Sensor (ABS, ASR, ESP)
- Encoder (velocity control)
- Camera (goal recognition)

Video camera		Motor Driver	
Image processin	g DSP	Controller C	PU
Communication in	nterface	Communication i	nterface
	CAN Bus, E	luetooth	
Communication Ir	nterface	Communication i	nterface
Communication In		Communication i	

Tinyphoon

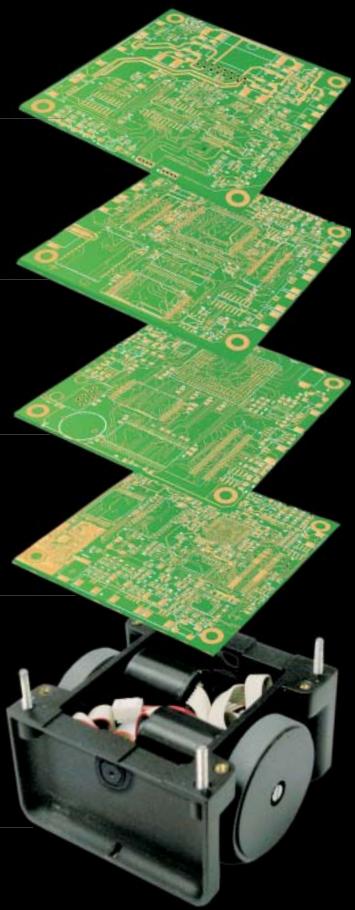
SENSOR BOARD

- Acceleration Sensor
- Gyro Sensor
- Yaw Rate Sensor
- Motor driver

MOTION CONTROL BOARD • Based on xc167 of Infineon

- Sensor Fusion
- Navigation and Motion Control
- Bluetooth Communication

LINUX BOARD


- Based on an ETRAX chip
- Bluetooth Communication
- Higher Level Strategy
- Higher Level Communication

VISION BOARD

- Based on a Blackfin DSP of Analog Devices
- Vision System (Detection of Ball, Goal Positions and Obstacles)

- MECHANICAL PART Fiber-reinforced plastics chassis
- DC Motors with
- magnetically digital encoders Digital CMOS video camera of
- Omni Vision for Vision System

